skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hytovick, Rachel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We use advanced experimental techniques to explore turbulence-induced deflagration-to-detonation transition (tDDT) in hydrogen–air mixtures. We analyze the full sequence of turbulent flame evolution from fast deflagration-to-detonation using simultaneous direct measurements of pressure, turbulence, and flame, shock, and flow velocities. We show that fast turbulent flames that accelerate and develop shocks are characterized by turbulent flame speeds that exceed the Chapman–Jouguet deflagration speed in agreement with the tDDT theory and direct numerical simulation (DNS) results. Velocity and pressure evolutions are provided to detail the governing mechanisms that drive turbulent flame acceleration. Turbulent flame speeds and fluctuations are examined to reveal flow field characteristics of the tDDT process. This work contributes to the understanding of fundamental mechanisms responsible for spontaneous initiation of detonations by fast turbulent flames. 
    more » « less